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Outline

- Personal vs Social Events
- Event Mining Approaches: Overview

- Personal Event Detection via spatfio-temporal
analysis

- Social Event Detection through the matching of
personal events from different users

- Social event co-participation analysis o predict
the existence of social ties (useful as a “friend
recommendation” technique)




Personal vs Social Events
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Personal and Social Event Detection: overview
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Social Events and Social Ties: overview
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Social and Personal Event Detection: overview
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Personal Event Detection: Methodology

. Input: a personal photo collection where each photo has a
fimestamp and geo-coordinates

. Output: groups of photos corresponding to personal events
chronological order
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Find all the gaps:
. first in space (spatial distance between neighbours)
. then in time (elapsed time between neighbours)

For each step classify intfo small and big gaps using k-means where k=2
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Personal Event Detection: Methodology

- Routine location detection: for each location compute the
number of days in which photos was taken. The maximum
number indicates the routine location for a period of fime.
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Personal Event Detection: Methodology

- Routine location detection: for each location compute the
number of days in which photos was taken. The maximum
number indicates the routine location for a period of fime.
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Personal Event Detection: Methodology

- Routine location events:

birthdays, graduation, Christmas, etc.

- Non-Routine location events can be further separated to sub-
events:

event: ACM MM’ 13 Barcelonaq, trip to Europe

sub-event: EBMIP workshop, Workshop on Immersive Media
Experience




Personal Event Detection: Dataset

> 6 users
> ~42 000 images

» Average duration per user 6.36 years

> Allimages are grouped in 726 folders (events) arranged by
users. This folder structure is the ground truth.

Personal Event Detection: Results
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Social Event Detection: Methodology

. Input: personal events from different users
. Output: groups of personal events corresponding to social events
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Social Event Detection: Methodology

. Input: personal events from different users

. Output: groups of personal events corresponding to social events
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Social Event Detection: Methodology

. Input: personal events from different users
. Output: groups of personal events corresponding to social events
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Social Event Detection: Dataset

11 180 events from Y! Upcoming. Of these, 1291 events contain photos from
more than 1 user

For each Y! Upcoming event we have:

-Start-end dates

-Location information (Y! WOEIDs)

Yl-Upcoming-tagged Photos in Flickr uploaded from 2007 to 2012
-ID of owner

-Timestamps

-GPS coordinates

For each user within the set of photos:

-Contact list




Social Event Detection: Dataset

How do we select cr and ¢s values?

We use 50% of the Y! Upcoming events to find these thresholds and the
remaining 50% to test.

When we compare against Ground Truth it may happen that:

There is a 1:1 relation between a Detected Social Event (DSE) and a Y!
Upcoming Event (YUE). This is regarded as a correct detection.

1 YUE corresponds to more than 1 DSE: under-joining

1 DSE contains more than 1 YUE tag: over-joining

Social Event Detection: Results

cr cs U-joint Correct O-joint Correct%
0.75 | 0.50 |28 265 32 81.54
075 | 1.00 | 26 265 32 82.05
0.75 | 5.00 |23 264 34 82.24
0.75 | 10.00 | 23 263 34 82.19
0.50 | 0.50 |28 267 31 81.90
050 | 1.00 | 26 267 31 82.40
0.50 | 5.00 |23 264 34 82.24
0.50 | 10.00 | 23 263 34 82.19
025 | 0.50 |45 254 14 81.15
025 | 1.00 | 45 254 14 81.15
025 | 5.00 |43 254 15 81.41
0.25 | 10.00 | 43 253 15 81.35

According to the parameter learning phase ¢r=0.50 and ¢s= 1.00
Using these parameters for the test set:

.Correct detection: 76.78%

.Under-joining: 9.56%

.Over-joining: 11.68%




Social Event Detection: Dataset

We analysed our dataset to see if there is a correlation between:

event co-participation (fwo Flickr users have photos with the same Y! Upcoming
tag)

and the existence of a social tie (two Flickr users have each other in their
contact lists)

A rapid analysis of our 1291 events with more than one participant shows that 1039
(80.40%) have at least 1 pair of participants that “know each other”.

Social Event Detection: Results
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Social Event Detection: Results

76% for a degree of co-
4 participation of 2

5 More than 90% for higher
degrees of co-participation
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Conclusion

For the Personal Event Detection Task:
e Our approach detects events with F1-measure equal to 81.35%
For the Social Event Detection Task:

We are able to produce correct detections of social events in 78.76% of the
cases.

This number rises to 88.32% if we include cases in which we only achieve partial
social event detection (under-joining).

For the Co-participation Analysis:

Two users “know each other” in 76% of the cases if they co-participate in at least
2 events. This number rises to almost 90% for higher degrees of co-participation,
meaning it can be used for “friend recommendation”.
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